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SUMMARY 
A recently developed mesoscale numerical model has been applied to the Athens Basin in order to provide 
a detailed description of the mean flow and pollution levels under neutral atmospheric conditions. The 
model is based on the numerical solution of the time-averaged Navier-Stokes equations written in their 
contravariant strong conservation form in a generalized non-orthogonal co-ordinate system. Before its 
application to the Athens Basin case, the reliability of the model was tested by predicting the flow and 
concentration fields over a three-dimensional hill. The predicted results agree favourably with available 
experimental data, demonstrating the validity, flexibility and economy of the model for flows in three- 
dimensional complex terrain. 
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1. INTRODUCTION 

The meteorological data required for the evaluation of pollutant dispersion, for wind energy 
applications and for the study of mesoscale circulations over complex terrain are usually 
available from synoptic scale networks of meteorological stations, which, however, lack sufficient 
resolution for detailed mapping of the wind field. In order to overcome this problem, either a 
dense network of monitoring stations or a mesoscale numerical model is required. Owing 
to the considerable expense involved and the difficulty in maintaining a dense network of 
surface stations for a very long time, few studies have been performed adopting the first 
approach. s 2  

The second approach applies three-dimensional numerical models which solve various sets of 
conservation  equation^.^ The major advantage in using numerical models is their capability to 
provide useful information for meteorological and air pollution scenarios in a fast, reliable and 
inexpensive way compared with the observational approach. The various kinds of numerical 
models correspond to the differences which are encountered in the level of assumptions regarding 
the flow equations or the physical dcmain. 

A basic category of mesoscale numerical models are the linear models developed by Jackson 
and Hunt4 in two dimensions and by Mason and Sykes’ in three dimensions. These models 
apply an analytical perturbation theory in the surface layer flow; their linear approximations 
restrict their use to  low hills without flow reversal. 

The increase in computer power in recent years has enabled the development of numerical 
models which solve the full non-linear equations of motion; examples include those of Pielke,6 
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Tapp and White,' Anthes and Warner,' Pandolfo and Jacobs,' Schuman and Volkert'O and 
more recently Glekas.' 

This paper presents a finite volume method for the solution of the incompressible three- 
dimensional Reynolds equations in a non-orthogonal surface-oriented co-ordinate system. The 
applications presented here concern the solution of the coupled momentum equations and the 
transport equation of species. 

The basic features which characterize the present model are as follows. 

1. A three-dimensional co-ordinate transformation is used instead of the I D  vertical transfor- 
mation which is used in almost all other models. Under this transformation the complex 
physical domain is transformed to a unit cube where the governing equations are solved. 
The advantages of the 3D transformation compared with the 1D vertical one are that the 
grid spacing in the computational space is uniform (reducing the mathematical operations 
per iteration) while in the physical space the grid is non-uniform depending on the ground 
geometry (fine near obstructions, coarse in flat areas, etc.). 

2. The numerical discretization of the equations is accomplished using the finite volume 
technique instead of the finite difference methods based on the Taylor expansion which are 
usually adopted in mesoscale models. 

3. Three-dimensional turbulent recirculating flows can be calculated owing to the 3D elliptic 
solution procedure which is used for the calculation of the pressure field. 

4. The time evolution of passive contaminant releases can be calculated as well as the steady 
state pattern for stratified or neutral atmospheric conditions. 

In subsequent sections the basic numerical approach is described; the mathematical formula- 
tion, the boundary conditions, the solution procedure and the turbulence closure are presented. 
For model validation its application to the calculation of the flow and concentration fields over 
a three-dimensional hill is described in Section 6, while in Section 7 the model is applied to 
predict the wind field and pollution levels due to selected pollution sources in the complex terrain 
of the Athens Basin. 

2. MATHEMATICAL FORMULATION AND BOUNDARY CONDITIONS 

In the present paper the equations are formulated in their contravariant form, with the vectors 
and tensors being expressed in a Cartesian basis.' ' 

The transport equations for mass, momentum and species can be cast into the convenient 
form 

where p, VJ, re and S, are the density, the contravariant components of the velocity vector, 
the exchange coefficient and the source term per unit volume respectively for the variable Q and 
uj are parameters which depend on the co-ordinate transformation. The source and exchange 
coefficients for velocities and scalar quantities and the parameters ai have been discussed 
elsewhere"*'* and the details are not repeated here. However, details of the closure models 
which are adopted in this work are discussed in the following section. 

The physical domain is transformed into a unit cube (Figure 1) where the equations are solved. 
The solution domain is oriented so that the inlet plane 1 lies normal to the approaching wind. 
The flow through this surface is assumed to be a boundary layer type of flow corresponding to 
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Figure 1. Physical and solution domains 

the experimental data. The lateral surfaces ( 5  and 6) are prescribed as permeable with zero 
tangential stress. The boundary conditions on the outflow surface 2 are 

u2 = 0, au3/ax1 = 0, aul /axl  = 0. 

A Dirichlet boundary condition (u’ = V,) is used on the upper boundary 4, while on surface 
3, the ground, a no-slip condition is imposed (u’ = u2 = u3 = 0). 

3. TURBULENCE CLOSURE 

Although the fundamental momentum, energy, mass and species conservation equations are 
applicable to the full range of atmospheric scales, direct application in calculating atmospheric 
flows requires high space resolution which is beyond the available computer power. However, 
it is possible to approximate these processes by using a turbulence closure scheme. In this paper 
the eddy viscosity concept is used and the turbulent viscosity pl is calculated using either the 
modified formula suggested by Cebeci13 (for the case of turbulent flow around the three- 
dimensional hill) or the mixing length formula suggested by O’BrienI4 (for the Athens Basin 
application). These models were chosen owing to their relative simplicity and their accurate 
behaviour in problems concerning the parametrization of the atmospheric boundary layer. 

Cebeci’s model is based on the Van Driest hypothesis, i.e. the turbulent viscosity p, is given 
by the formula 

PI = pi: auiay, (2) 

where I,,, is the mixing length and y is the distance from the wall. Moreover, the boundary layer 
is split into two regions, the inner one 0 < y < y, and the outer one y ,  < y < 6, where 6 is the 
boundary layer height. For the respective regions the turbulent viscosity is calculated by the 
formulae 

= pL2[(auyay)2 + (aU3/ay)211/~, o .= y .= y,, (34  
I f m  I 
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where u1 and u3 are the parallel-to-the-wall velocity components, L = 0.4y[1 - exp( - y / A ) ] ,  
with A = 26(v/N)/u,, u* = (t,/p)'I2, v the kinematic fluid viscosity, u* the friction velocity, T~ 
the wall shear stress, N = (1 - ll*8p+)L/2 and pt = (jq/p'I2)gradp, a = 0-0168 and y ,  is the 
distance from the ground at which the values of pl given by relations (3a) and 3(b) become equal. 

The O'Brien model is based on the similarity theory for the surface boundary layer: 

where y c  and 6 are the heights of the surface layer and the boundary layer respectively and pE 
and p b  are the turbulent viscosities at the respective locations y ,  and 6. 

4. NUMERICAL PROCEDURE 

The numerical procedure used to solve the generalized form of the governing conservation 
equations ( 1 )  is described in detail in References 1 1  and 15. A uniform Cartesian grid is employed 
in the transformed space and finite difference approximations to the conservation laws are 
obtained by integrating equations (1) over the control volumes and discretizing them in Cartesian 
co-ordinates (Figure 2). A staggered mesh arrangement for the velocities is adopted and the 
hybrid difference scheme' is used to discretize the convection terms. Then the set of governing 
equations can be cast into the general form 

Ap@p = A,@E + Aw@w + ANON + As@s + A"@U + A D @ D  + So, ( 5 )  

where the coefficients A i  link the value with the values of the six neighbouring i-nodes (Figure 
2). 

The pressure field is gradually established through pressure corrections P' in such a way as 
to satisfy global and local continuity. A pressure correction equation of the general form (5) is 
solved with @ = P'. This equation is a three-dimensional elliptic equation and is solved as such 
in this work." 

The calculation procedure starts from an initial guess for the flow and pressure fields and the 
non-linear algebraic equation set ( 5 )  for the momentum and pressure correction is solved 
iteratively until convergence is obtained, i.e. the mass imbalance becomes less than a small 
fraction E of the inlet mass flow minlct ( E  = 10-3min,c,). 

Figure 2. Control volume representation (physical and transformed spaces) 
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5. GENERATION OF THE CO-ORDINATE SYSTEM 

The method for the generation of non-orthogonal body-fitted grids" which is employed in this 
work is based on the solution of an elliptic system of equations which utilizes the transformation 
x i  = x'(X') (Figure 1). After interchanging the dependent and independent variables, the system 
is written as 

"I('<< + cprJ + a2(rqq + $rq) + a3(rcc + (q) + 2(8,r<, + 82'55 + 83rsJ = 0, (6)  

where r = (XI, x2, x 3 )  = (x, y ,  z), ( = X', q = x', ( = X3, a, = g j J g : k  - ( g j k ) 2  and pi  = g i k g , k  - - 
g i J g k k ,  with ( i , j ,  k )  = (1, 2, 3). The coefficients g i j  represent the metric coefficients of the transfor- 
mation and cp, $ and o are forcing parameters allowing the construction of the grid lines at 
prespecified locations. 

6. VALIDATION TESTS-FLOW AND CONCENTRATION FIELDS OVER A 
THREE-DIMENSIONAL HILL 

The numerical model was used to calcualte the velocity and concentration fields around an 
axisyrnmetric hill under neutral flow conditions. The results were compared with measurements 
conducted in the wind tunnel of the U.S. Environmental Agency's Fluid Modelling Facility." 

The axisymmetric hill was an idealized version of the Cinder Cone Buttle hill located in 
Southern Idaho. The model hill is described by the relation 

where h, = 155 mm, L = 388 mm and c = 10 mm for r < 755 mm, and h(r) = 0 for r > 755 mm. 
The top of the model hill is a flat plateau about 400mm in diameter. The maximum terrain 
slope is about 24", causing, as the experiments indicate, flow separation on the lee side of the 
hill. The flow is turbulent with a Reynolds number based on the hill height equal to 35,400. 

The results presented here have been obtained using two different numerical grids of 
35 x 29 x 25 and 53 x 39 x 49 points in the directions xl, x2 and x3 respectively. 

Figures 3(a) and 3(b) show the geometrical configuration of the application and the three- 
dimensional grid around the hill respectively. The boundary conditions are those described in 
Section 2. On the inlet plane the velocity profile was taken from the available experimental 
data." The grid nodes were gathered near the ground; more than half of the 29 grid nodes in 
the vertical direction were placed inside the thickness of the separating boundary layer. The 
iterative solution procedure was regarded as converged when the sum of the non-dimensionalized 
flux imbalance was less than for the momentum and 

In Figure 4 the predicted mean velocity field over the hill is plotted. The numerical predictions 
indicate a recirculation zone on the downwind side of the hill, which is confirmed by the 
experimental data." Although a relatively simple zero-equation turbulence model was used, the 
size of the recirculation zone was predicted quite accurately. According to the present numerical 
predictions, the separation zone begins at  a distance of 2h, (where h, is the maximum hill height) 
downwind of the hill top and extends for a streamwise distance of about l.82h0, while the 
experiments show a separation region of length 1.95ho starting at a point 1.73h0 downwind of 
the hill top (difference less than 7%). 

Figure 5 shows the vertical velocity distributions at three locations, namely, upwind, at the 
top and downwind of the hill. The velocities are presented scaled by the freestream velocity U,. 

for the species. 
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Figure %a). Geometrical configuration of the hill 

Figure 3(b). Three-dimensional grid over the hill 

Results are presented for the two different grids employed, showing little difference between 
them. Thus it is evident that the results are grid-independent. The predicted distributions are 
in good agreement with the experiments. The differences are very small at the upwind base and 
top of the hill, while some discrepancies are observed at the downwind base of the hill (x'/ho = 5 )  
which are removed when the fine grid is employed. In a recent work by Tryfonopoul~s'~ on 
the same application as in this study, the employment of two different turbulence models (the 
one used in this paper and the k--E turbulence model) revealed that the k--E model tends to 
overestimate the velocities near the hill surface up to a distance of one hill height above the 
ground. Then the velocity distributions match very well. Thus it can be argued that the 
discrepancies between the numerical predictions and the experiments on the downwind side of 
the hill can be attributed mainly to the numerical grid used. 

The concentration field created by a point source located at various positions relative to the 
hill top was then calculated. The exchange coefficient To is calculated by the relation r, = ap,, 
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Figure qa). Mean velocity field at the symmetry plane of the hill (x3 /h ,  = 0) 
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Figure qb). Mean velocity field (top view) at a distance x2/ho = 0.14 from the ground 
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where a for neutral atmospheric conditions is given by a = ~ / o , , ~ O  with aE the species Schmidt 
number (a, = 0.9).” 

Figure q a )  shows the ground level concentration at the symmetry plane of the hill when the 
point source is located at x’ /h ,  = 5 upwind from the top of the hill and the stack height is 
h, = h,. The concentrations are normalized by the quantity Q/HzUo,  where Q is the effluent 
flow rate in cm3 min-’, U, is the freestream speed and H = h,  is the height of the hill. 
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Figure 5. Vertical distributions of the u'-component of the velocity a t  various locations (a) upwind, (b) a t  the top and 
(c) downwind of the hill 
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Figure qa). Ground level concentration at the symmetry line; x' /ho  = 5 upwind of the hill top, h, = h,, x' is measured 
from stack 
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Figure qb) .  Field concentrations at the symmetry plane of the hill; x ' /h ,  = 5 upwind of the hill top, h, = h,,  x1 is 
measured from the stack 
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Figure qc) .  Lines of constant ground level concentration; x ' /h ,  = 5 upwind of the hill top, h, = h,  

From this figure it is apparent that at a distance of about eight hill heights from the point 
source there is a sudden reduction in the ground level concentration. At this location there is a 
small recirculation bubble in the flow field and a small quantity of the pollutant is trapped inside 
it. The maximum ground level concentration occurs at a distance of x'/ho = 7 from the point 
source, while the experimental value was near x'/ho = 8 .  

The employment of the fine grid showed that the sudden reduction in the ground level 
concentration occurs at a distance of nearly nine hill heights from the point source and 
consequently the local maximum occurs at a distance of eight hill heights from the point source, 
which is in agreement with the experimental data. 

In Figure q b )  the contours of field concentration as a percentage of the concentration at the 
stack exit are presented. Owing to the neutral conditions which are simulated, the pollutant 
plume goes to the top and over the hill and the maximum concentration occurs on its lee side. 

The contours of surface concentration are presented in Figure 6(c). It is of interest to note 
that after the stack and owing to the outward motion of the flow upwards from the top, a 
significant dispersion of the plume is observed. On the lee side of the hill, owing to the inward 
motion of the flow, the opposite phenomenon is observed. 

Figure 7(a) shows comparisons between the predicted ground level concentrations and 
measurements at the symmetry plane of the hill when the point source is located at x'lh,  = 4 
and 8.3 downwind from the top of the hill and the stack height is h, = 0.77h0. Again the 
concentrations are normalized by the quantity Q/Hz  U,. 

From this figure it can be seen that when the source is located at x,' = 8.3h0, the maximum 
ground level concentration (GLC) shifts further away from the emission point compared with 
the case of x,' = 4h,. This is because the near-hill downward vertical component of the velocity 
vector for the latter case is larger, resulting in bending of the plume axis towards the ground. 

The vertical concentration profiles at four locations downwind of the source for a source 
location at a distance of x,' = 4h0 from the hill top and at a height h, = h,, are shown in Figure 
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Figure 7(a). Ground level concentrations 
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Figure 7(b). Vertical distribution of the concentration at various locations downwind of the source; x: = 4h0, 
h, = O.llho 

7(b). An elevated maximum seems to occur up to a distance of about 9ho from the source, while 
far downstream, away from the region of significant downward motion, the concentration profiles 
decrease monotonically with height, being similar to those found in pollutant release at the 
ground in an undisturbed boundary layer. 

In Figures 7(c) and 7(d) the contours of surface concentration as a percentage of the 
concentration at the stack exit are presented for the two stack locations given above. It is of 
interest to note that after the stack and owing to the inward motion of the flow on the lee side 
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Figure 7(d). Lines of constant ground level concentration; x,' = 8.3h0, h, = 0.77h0 

of the hill, there is a restriction on the pollutant dispersion in the crosswind direction. When 
the stack is located at x: = 8.3h0, the crosswind restriction of the pollutant dispersion is less 
than when the stack is located closer to the hill (x,  = 4h,). This is expected owing to the less 
severe inward fluid motion far downwind of the hill than near it (see Figure qb)). 

7. SIMULATION OF THE FLOW AND CONCENTRATION FIELDS OVER THE 
ATHENS BASIN 

The numerical simulation of the neutral wind and concentration fields due to elevated point 
sources over the complex topography of the Athens Basin is presented here. 

The Athens Basin has a highly mountainous terrain, since it is surrounded by the mountains 
of Parnitha, Pendeli, Hymettos and Egaleo from the NW to NE sides, while at the SW boundary 
is the Aegean Sea. Figure 8(a) shows a three-dimensional view of the area under consideration. 

The solution domain was subdivided into finite volumes using a non-orthogonal grid which 
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Figure 8(a). Three-dimensional view of the Athens Basin 

Figure 8(b). Locations where experimental data were taken 

was generated using the method presented in Section 5.  The elevation of the top boundary of 
the computational domain was set at 6000 m (i.e. nearly six times the maximum mountain height), 
while the horizontal dimensions of the domain were 425 km x 42.5 km. 

The flow over the area was calculated for winds approaching from the west, a direction nearly 
free of surface obstructions and thus ensuring the reliable application of the boundary conditions. 
The numerical predictions were compared with experimental data taken in the wind tunnel of 
the National Technical University of Athens under neutral atmospheric conditions. In the 
experimental study a physical model of the Athens Basin was used with different scales in the 
horizontal and vertical directions.22 

For physical model simulations of mesoscale phenomena (physical dimensions from 
10 km to 100 km) in the wind tunnel the turbulent sublayer of the boundary layer is poorly 
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reproduced (owing to poor simulation of the ground relief) unless a distorted scale is used. The 
exaggeration of the topography helps in reproducing more accurately in the wind tunnel the 
turbulent characteristics of the real flow. Moreover, the adaptation of the distorted scale helps 
in simulating the anisotropic character of the stresses of the atmospheric boundary layer. 

In neutral atmospheric flows the vertical diffusion coefficient is 1-104 times less than the 
horizontal one; the distortion ratio can thus vary from 10- to lo2. For cases where the Coriolis 
force and the Ekman spiral can be neglected, it has been proven that the distortion ratio can 
be of the order of lo-'. 

The inflow through the western boundary was assumed to be a boundary layer type of flow 
with a boundary layer thickness 6 = 600 m and with a surface roughness zo, which was taken 
for the sea (zo = 0.001 m) and the land (zo = 0.2 m). The latter value corresponds to ground 
with medium or large roughness, which characterizes the west-south-west part of the Attica 
Peninsula.22 

The locations where experimental data were taken are shown on the lay-out in Figure 8(b). 
At these locations, identified by the matrix of numbers shown in the figure, the comparison 
between the measurements and the numerical predictions for the wind and concentration fields 
will be made. Measurements of the wind velocity and turbulence quantities were taken at three 
heights above the ground, corresponding to 40, 80 and 120 m on the full scale. 

Results were obtained with two numerical grids of 34 x 29 x 33 (32,538) and 53 x 39 x 49 
(101,283) points in the directions xl, x2 and x3 respectively, corresponding to horizontal grid 
spacings of 1.45 and 0.5 km respectively. In the vertical direction the grid points were clustered 
near the ground, with the first co-ordinate surface placed at 21 and 12 m above it respectively. 

The CPU time needed per iteration and grid point was 1.1 ms on a Dec 3200 workstation, 
while the CPU memory required was 3.4 Mbyte for the coarse mesh and 10.5 Mbyte for the 
fine one. 

7.1. Meanpow 

Comparisons of the predicted wind field using the two different meshes with the corresponding 
measurements at various locations are presented in Figure 9. The predictions of the model are 
also compared with the predictions of a mass-consistent model (NOABL)23 for the same wind 
conditions. The NOABL code is based on the solution of the continuity equation establishing 
a divergence-free flow field. It is used extensively in wind energy potential applications owing 
to its relative accuracy and very low computational cost. 

Figures 9(a) and 9(b) are typical examples of the degree of agreement between predictions and 
measurements. At these locations the numerical predictions compare reasonably well with the 
experimental data (locations 9-13 and 7-16 in Figure 8(b) respectively). These locations refer 
either to the top of mountains (location 9-13) or to locations far from high surface obstructions 
(location 7-16), where local characteristics of the topography dominate over the influence of the 
distorted scale of the physical model employed in the wind tunnel s i m u l a t i ~ n . ~ ~ . ~ ~ * ~ ~  

However, at locations in the nearby region of mountains or surface obstructions the 
discrepancies between numerical predictions and measurements are large (Figure 9(c), corre- 
sponding to location 9-10 in Figure 8(b)). This can be attributed to the insufficient numerical 
resolution of the topography (compared with its representation in the physical model), to the 
experimental uncertainties and possibly to the distorted scale of the physical model, which is 
expected to have an exaggerated decelerating effect on the velocities at such sites. 

The dependence of the predictions on the grid size is also shown in Figure 9. The fine mesh 
calculations are in better agreement with the experiments than those of the coarse mesh and the 
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Figure 9. Vertical distributions of the d-component of the velocity: (a) x ' / L  = 0.24, x31B = 0.37; (b) x ' / L  = 0.337, 
x 3 / B  = 0.454; (c) x ' / L  = 0.27, x 3 / B  = 0.24; x:, surface elevation; x:, upper boundary elevation ( L  and B are the length 

and width of the terrain) 
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Figure 9. (Continued) 

NOABL predictions, especially near the ground. From Figure 9(c), which corresponds to the 
worst agreement with the experiments, the NOABL code overpredicts the wind speed by more 
than 35%, compared with 20% for the coarse mesh calculations and less than 10% for the fine 
mesh. At the other locations the fine mesh overpredicts the wind speed by less than 5%. 

The projection of the velocity vectors on to a plane for the x2 = 21 m co-ordinate surface is 
shown in Figure 10. The dashed lines represent the surface elevation contours. A characteristic 
feature is the channelling of the flow between Mount Parnitha and Mount Pendeli and the 
deflection of the flow downwind of Mount Hymettos to the north. The wind flow over 
downtown Athens is diverted to the north owing to the presence of Mount Turkovunia and 
Mount Hymettos, which block the wind flow to the south. 

7.2. Pollutant dispersion 

Based on the wind field presented in the previous subsection, the transport equation for passive 
contaminants is solved, simulating the dispersion of pollutants emitted from two elevated point 
sources under neutral atmospheric conditions. The numerical predictions are compared with 
available experimental data obtained from measurements conducted in the wind tunnel of the 
National Technical University of Athens.” The locations of the point sources (P1 and P2) are 
shown in Figure 8(b). The effective heights of their stacks are herr = 214.2 and 135.5 m respectively. 

Figure 11 shows the ground level concentration in p g  m-3 for the point source P2. The 
maximum GLC assuming 400 mg Nm-3 pollutant concentration at the stack exit is 8 p g  m - 3 ;  
the corresponding experimental value was 9 . 7 ~ g m - ~ .  From the figure it is evident the 
non-symmetrical dispersion of the pollutants with respect to the plume axis is caused by the 
divergence of the flow field by Mount Turkovunia and Mount Hymettos, which block the wind 
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Figure 10. Mean velocity field at a distance of 21 m above the ground 
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Figure 14. Contours of ground level concentration at (A) . y3 /B = 0.239, (B) x 3 / B  = 0.269 and (C) x’/B = 0.33 planes 

flow to the south. Moreover, it can be seen that concentrations greater than 2.5 pg m-3 are 
present in an area with normal dimension of about 5.8 km, while the corresponding experimental 
value was 5 km. 

In Figure 12 the concentration field is presented at various longitudinal sections (correspond- 
ing to lines A, B and C in Figure 11). Owing to the high effective stack height, the pollutants 
travel a long distance from the source before they reach the ground. The maximum GLC in the 
area is located on the lee side of Mount Egaleo, while along line C the maximum GLC is located 
downwind of Mount Pendeli. 

Figure 13 shows the surface concentration in pg m-3 for the point source P1. The maximum 
GLC, again assuming a concentration level of 400 mg Nm-’ at the stack exit, is 3.6 pg m-’; 
the experimental value was 2 pg m-3. The non-symmetrical dispersion of the pollutants is 
stronger than in the previous case, because the plume of the pollutants is deflected sideways as 
it passes over Mount Hymettos. 

Figure 14 shows the concentration level at various longitudinal sections. 
Figure 15 shows the distributions of ground level concentration with the distance from 

sources P1 and P2. Predictions are also plotted using a Gaussian dispersion model for flat 
terrain. 

Figure 15(a) corresponds to the source P2 which is located near Mount Egaleo. Owing 
to the immediate ground elevation downwind of the source, the present model results in 
considerably higher ground level concentrations than the Gaussian model, which assumes flat 
terrain. 

In the case of point source P1 (Figure 15(b)) the source is located far upwind from Mount 
Hymettos and so near the source the predictions of the Gaussian model agree with the present 
ones. Further downwind the steep elevation of Mount Hymettos causes an elevation of the 
plume axis and smaller values of ground level concentrations are predicted on the upwind side 
of the montain compared with the concentrations obtained from the Gaussian model. 
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8. CONCLUSIONS 

A fully three-dimensional mathematical model for studying the air flow as well as the pollutant 
releases into the environment has been briefly described and its application in the complex 
terrain of the Athens Basin was presented. The method is based on the time-averaged 
Navier-Stokes equations for an incompressible fluid written in their contravariant strong 
conservation form in a generalized non-orthogonal system. The reliability of the model was 
tested by successfully predicting the flow and pollutant fields in laboratory-scaled environmental 
flows. 

The predicted mean flow variables, flow speed-up and concentration distributions over a 
three-dimensional hill and over the complex terrain of the Athens Basin are in qualitative 
agreement with measurements, demonstrating that the model can give a sound insight to the 
nature of pollutant dispersion in complex terrains. The grid independence tests conducted 
showed an improvement in the results, especially in the Athens Basin application, giving 
confidence in the capabilities of the code. 

As a next step the code will be extended to predict stratified flow fields and thus a complete 
and robust engineering tool will be available for the simulation in any detail of atmospheric 
dispersion of inert air pollutants. 
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